翻訳と辞書
Words near each other
・ Wellersburg, Pennsylvania
・ Welles
・ Welles (name)
・ Welles Crowther
・ Welles Declaration
・ Welles House
・ Welles House, Wilkes Barre Pennsylvania
・ Welles-Pérennes
・ Well-order
・ Well-ordering principle
・ Well-ordering theorem
・ Well-pointed category
・ Well-posed problem
・ Well-quasi-ordering
・ Well-Schooled in Murder
Well-separated pair decomposition
・ Well-structured transition system
・ Well-Tech Award
・ Well-tempered
・ Well-Tempered Clavicle
・ Well-woman examination
・ Well...
・ Wella
・ Wellacre Academy
・ Wellacre Quarry
・ Wellagiriya
・ Wellan's
・ Welland
・ Welland (disambiguation)
・ Welland (Kettering BC Ward)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Well-separated pair decomposition : ウィキペディア英語版
Well-separated pair decomposition
In computational geometry, a well-separated pair decomposition (WSPD) of a set of points S \subset \mathbb^d, is a sequence of pairs of sets (A_i, B_i), such that each pair is well-separated, and for each two distinct points p, q \in S, there exists precisely one pair which separates the two.
The graph induced by a well-separated pair decomposition can serve as a k-spanner of the complete Euclidean graph, and is useful in approximating solutions to several problems pertaining to this.
== Definition ==

Let A, B be two disjoint sets of points in \mathbb^d, R(X) denote the axis-aligned minimum bounding box for the points in X, and s > 0 denote the separation factor.
We consider A and B to be well-separated, if for each of R(A) and R(B) there exists a d-ball of radius \rho containing it, such that the two spheres have a minimum distance of at least s \rho.
We consider a sequence of well-separated pairs of subsets of S, (A_1, B_1), (A_2, B_2), \ldots, (A_m,B_m) to be a well-separated pair decomposition (WSPD) of S if for any two distinct points p, q \in S, there exists precisely one i, 1 \leq i \leq m, such that either
* p \in A_i and q \in B_i, or
* q \in A_i and p \in B_i.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Well-separated pair decomposition」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.